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Abstract

In these notes, we clarify the exact setup and proofs of both the telephone theorem and the
generalized Koopman-Pitman-Darmois theorem by John Wentworth. For motivation, see our main
post, the high-level review of the natural abstractions agenda.
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1 The Telephone Theorem and its Proof

1.1 Setup

Let (Ω,F , P ) be a probability space and X0, X1, ... be a (discrete time) Markov chain defined on
Ω, that is, each Xi is a random variable Xi : Ω → R such that

P (Xi = xi | X0:i−1 = x0:i−1) = P (Xi = xi | Xi−1 = xi−1)

for all x1:i−1 with positive support: P (X1:i−1 = x1:i−1) > 0.

We use I(X;Y ) to denote the mutual information between random variables X,Y :

I(X;Y ) = DKL(P(X,Y )||PX ⊗ PY )

First, note that the mutual information between Xt and X0 must converge as t→ ∞.

Lemma 1. As t→ ∞, the mutual information I(X0;Xt) → I∞ for some I∞ ≥ 0.

Proof. By the data processing inequality, we have I(X0;Xt) ≥ I(X0;Xt+1). Since I(X0;Xt) ≥ 0
for all t, the lemma follows by the monotone convergence theorem.

1.2 The telephone theorem for finite probability spaces

First, we consider the case where the sample space Ω is finite.

In this case, note that |X0(Ω)| ≤ |Ω| < ∞, and there are only finitely many values of I(X0;Xt)
(since there are only finitely many partitions of Ω1). Combined with Lemma 1, this implies the

1Formally, every random variable X : Ω → R induces the partition {X−1(x)|x ∈ X(Ω)} on Ω. It can be proved that
the mutual information of two random variables only depends on the induced partitions on the sample space.
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existence of T such that for all t ≥ T , we have I(Xt;X0) = I(Xt+1;X0).

We now show that this implies P (X0|Xt) = P (X0|Xt+1) for t ≥ T – that is, the conditional
probability distributions are equal from then on:

Lemma 2. For a Markov chain X1, X2, ..., the following two conditions are equivalent:

1. I(X0;Xt) = I(X0;Xt+1).

2. X0⊥Xt | Xt+1; that is, P (X0|Xt = xt) = P (X0|Xt+1 = xt+1) with probability 1.2

Proof. First, by properties of Markov chains, Xt+1 and X0 are independent given Xt and thus
I(X0;Xt, Xt+1) = I(X0;Xt).

The lemma follows from properties of mutual information:

• (1 → 2) If I(Xt;X0) = I(Xt+1;X0), then applying the chain rule for mutual information we
have

I(X0;Xt, Xt+1) = I(X0;Xt+1) + I(X0;Xt | Xt+1)

= I(X0;Xt) + I(X0;Xt | Xt+1).

Yet since I(X0;Xt, Xt+1) = I(Xt;X0), this implies that I(X0;Xt|Xt+1) = 0 and thus
X0⊥Xt|Xt+1.

• (2 → 1) On the other hand, if X0⊥Xt|Xt+1, then together with the original Markov chain
we obtain I(X0;Xt) = I(X0;Xt, Xt+1) = I(X0;Xt+1).

In order to show the general case, we apply the fact that the likelihood ratio is a minimally
sufficient statistic, as shown here:

Lemma 3 (Likelihood ratio is a minimally sufficient statistic). Let X,Y be two random variables
on Ω with codomains X and Y, where either X ,Y are countable, or X,Y admit a joint density
function. Define f : Y → ∆(X ) by the formula

f(y) := P (X | Y = y).

Define f(Y ) := f ◦ Y : Ω → X . Then f(Y ) is a minimal sufficient statistic of Y for predicting X,
that is:

1. P (X | Y ) = P (X | f(Y )) = P (X | P (X | Y ))

2. For any other sufficient statistic Z : Y → Z of Y for predicting X from Y , there exists a
function G : Z → ∆(X ) with G(Z(Y )) = f(Y ).

Proof. We do the proof in the discrete case. We believe that the proof can be done in the same
way for the continuous case, with integrals replacing sums, but have not thought about this in
detail.

Let y ∈ Y and define p = P (X | Y = y). We have the following:

P (X | f(Y ) = f(y)) = P (X | f(Y ) = p)

=
P (X, f(Y ) = p)

P (f(Y ) = p)

=

∑
y′:f(y′)=p P (X, y′)∑
y′:f(y′)=p P (y′)

=

∑
y′:f(y′)=p P (X | y′) · P (y′)∑

y′:f(y′)=p P (y′)

=

∑
y′:f(y′)=p p · P (y′)∑
y′:f(y′)=p P (y′)

= p

= f(y)

= P (X | Y = y).

2The second statement follows from the first by applying the Markov chain / independence in both directions:
P (X0 | Xt = xt) = P (X0 | Xt = xt, Xt+1 = xt+1) = P (X0 | Xt+1 = xt+1).
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For the second statement, notice that

P (X | Z(Y )) = P (X | Y ) = f(Y ),

proving the claim with G(z) := P (X | Z(Y ) = z).

1.3 Formal statement and proof

The telephone theorem follows from Lemmas 2 and 3:

Theorem 4 (Telephone theorem for finite probability spaces). There exist a sequence of functions
f1, f2, ..., where fi : R → RX0(Ω), such that:

1. there exists a T ∈ N such that for all t ≥ T , ft(Xt) = ft+1(Xt+1) with probability 1, and

2. for all t, P (X0|Xt) = P (X0|ft(Xt)) pointwise on Ω.

Proof. Let ft be xt 7→ P (X0|Xt = xt). That is, ft the function that maps xt to a vector in RX0(Ω),
where each element is P (X0 = xi0|Xt = xt).

By Lemma 3 (and by construction), we have P (X0|Xt) = P (X0|ft(Xt)) pointwise on Ω.

By Lemmas 1 and 2, there exists T ∈ N such that for all t ≥ T , we have P (X0|Xt) = P (X0|Xt+1)
with probability 1. Therefore, for t ≥ T , we have ft(Xt) = ft+1(Xt+1) with probability 1.

1.4 The telephone theorem for discrete or absolutely continuous
Markov chains

Next, we prove the general form of the Telephone theorem. A remark on notation: Often, we will
write P (x0 | xt) when we mean, e.g., P (X0 = x0 | Xt = xt). This is meant to make the notation
less cluttered. When we write P (X0 | Xt), we mean the whole conditional distribution instead of
individual values.

Theorem 5 (The telephone theorem). For any Markov chain X0, X1, ... that is either discrete or
absolutely continuous, there exist a sequence of functions f1, f2, ..., where fi : R → RX0(Ω), such
that:

1. ft(Xt) converges in probability to some random variable f∞, and

2. for all t, P (X0|Xt) = P (X0|ft(Xt)) pointwise on Ω.

Proof. Let ft be x 7→ P (X0|Xt = x).

By Lemma 3 and by construction, we have that P (X0|Xt) = P (X0|ft(Xt)) pointwise.

By Lemma 1, we have that I(X0;Xt) converges as t→ ∞. This implies that the sequence I(X0;Xt)
is Cauchy: for every ε > 0 there exists a T ≥ 0 such that for all t ≥ T and k ≥ 0, we have:

|I(X0;Xt)− I(X0;Xt+k)| < ε5

Using the data processing inequality, the Markov property, and properties of mutual information,
we have that:

|I(X0;Xt)− I(X0;Xt+k)| = I(X0;Xt)− I(X0;Xt+k)

= I(X0;Xt, Xt+k)− I(X0;Xt+k)

= I(X0;Xt|Xt+k)

=

∫
Xt+k

DKL

(
P (X0, Xt | Xt+k) ∥ P (X0 | Xt+k)⊗ P (Xt | Xt+k)

)
dP (Xt+k).

We’ll complete the proof assuming that the Markov chain is discrete; the proof in the case where
the chain is continuous is similar, but with densities instead of mass functions and integrals instead
of sums.

|I(X0;Xt)− I(X0;Xt+k)|

=
∑

x∈Xt+k

P (Xt+k = x) ·DKL

(
P (X0, Xt | Xt+k = x) ∥ P (X0 | Xt+k = x)⊗ P (Xt | Xt+k = x)

)
< ϵ5
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We can split the sum into two cases:

Sbad =

{
x ∈ Xt+k

∣∣ DKL

(
P (X0, Xt | Xt+k = x)

∥∥ P (X0 | Xt+k = x)⊗ P (Xt | Xt+k = x)
)
≥ ε4

}
Sgood =

{
x ∈ Xt+k

∣∣ DKL

(
P (X0, Xt|Xt+k = x)

∥∥ P (X0 | Xt+k = x)⊗ P (Xt | Xt+k = x)
)
< ε4

}

It follows that P (Sbad) < ε. By construction, for x ∈ Sgood, we have

δ
(
P (X0, Xt | Xt+k = x), P (X0 | Xt+k = x)⊗ P (Xt | Xt+k = x)

)
<

√
DKL

(
P (X0, Xt | Xt+k = x) ∥ P (X0 | Xt+k = x)⊗ P (Xt | Xt+k = x)

)
< ε2

where δ(P,Q) is the total variation distance between P and Q.

This implies by the correspondence between total variation and L1 norm that

ϵ2 > δ
(
(P (X0, Xt | Xt+k = x), P (X0 | Xt+k = x)⊗ P (Xt | Xt+k = x)

)
=

1

2

∑
x0,xt

∣∣∣P (x0, xt | Xt+k = x)− P (x0 | Xt+k = x) · P (xt | Xt+k = x)
∣∣∣

=
1

2

∑
x0,xt

P (xt | Xt+k = x) ·
∣∣∣P (x0 | xt, Xt+k = x)− P (x0 | Xt+k = x)

∣∣∣
=

1

2

∑
xt

P (xt | Xt+k = x)
∑
x0

∣∣∣P (x0 | xt)− P (x0 | Xt+k = x)
∣∣∣

since P (X0 | xt, Xt+k = x) = P (X0 | xt) by the Markov property.

Finally, consider the sets

Qbad =

{
(x, xt) ∈ Sgood ×Xt

∣∣∣ ∑
x0

∣∣P (x0 | xt)− P (x0 | Xt+k = x)
∣∣ ≥ ε

}

Qgood =

{
(x, xt) ∈ Sgood ×Xt

∣∣∣ ∑
x0

∣∣P (x0 | xt)− P (x0 | Xt+k = x)
∣∣ < ε

}

By construction, P (Qbad) < 2 · ε. This gives us, by union bound:

P

(∥∥∥P (X0 | Xt)− P (X0 | Xt+k)
∥∥∥
2
< ε

)
≥ P

(∑
x0

∣∣P (x0 | Xt)− P (x0 | Xt+k)
∣∣ < ε

)
≥ 1− P (Qbad)− P (Sbad)

> 1− 3ε

As ε is arbitrary this shows that the sequence ft(Xt) = P (X0 | Xt) is Cauchy in probability. That
is already known to prove the claim, but we finish the reasoning for completeness: By applying
the Borel-Cantelli lemma to a subsequence tk such that

∞∑
k=1

P

(∣∣ftk (Xtk )− ftk+1(Xtk+1)
∣∣ > 1

2k

)
<

∞∑
k=1

1

2k
= 1 <∞,

it follows that ftk (Xtk ) is almost surely a Cauchy sequence in R. Let f∞ be the almost surely limit
of ftk (Xtk ). Applying the fact that ft(Xt) is Cauchy in probability, it follows that it converges in
probability to f∞, as desired.
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2 Generalized Koopman-Pitman-Darmois Theorem

2.1 Notation

In the following, we will often have the following notational situation: there is a set {1, . . . , n} of
“variable indices” and a finite set I of “function indices” together with attached variables index
sets Ni ⊆ {1, . . . , n} for i ∈ I. In this situation, define N(j) :=

⋃
i:j∈Ni

Ni. For B ⊆ {1, . . . , n},
define

N(B) :=
⋃
j∈B

N(j) =
⋃

i:Ni∩B ̸=∅

Ni.

Another notational note: for a function f(X), we denote one of its values by f(x). Similarly, given
a density p(Θ), we denote one of its values by p(θ).

Finally, θ can in the following either live in an open subset O ⊆ RM or only take countably
many values. Denote by L2 either the space L2(O) or L2({θl}) depending on the situation. In any
case, it is a Hilbert space.

2.2 The Theorem

We will ignore some regularity conditions and slight generalizations and defer a discussion of them
to Remark 8.

Theorem 6 (Generalized Koopman-Pitman-Darmois). Let p(Θ) be either a probability mass func-
tion over countably many values θ, or a density over θ ∈ O for some open set O ⊆ RM . Further-
more, let

p(X | Θ) = p(X1, . . . , Xn | Θ)

be a conditional probability density over Rn. Together, these can be used to define the posterior
mass function or density p(Θ | X) using Bayes rule.

Let a finite set I, subsets Ni ⊆ {1, . . . , n} for i ∈ I, and conditional potential functions ψi(· |
Θ = θ) : RNi → R≥0 be given such that

p(X | Θ) =
∏
i∈I

ψi(XNi | Θ).3

We also assume that this distribution has a (low-dimensional) sufficient statistic: there exists a
function G : Rn → RD (for some reasonably small D) such that

p
(
Θ | X

)
= p
(
Θ | G(X)

)
.

We assume three differentiability conditions:

(i) G is assumed to be differentiable.

(ii) Let F : RD → L2 be the function from Lemma 3 with the following property:

F (G(x)) = p(Θ | X = x).

F is assumed to be Fréchet differentiable.

(iii) Each ψi, when considered as a function

ψi : RNi → L2, xNi 7→
[
ψ(xNi | Θ) : θ 7→ ψ(xNi | θ)

]
,

is assumed to be continuously Fréchet differentiable, i.e., a C1 function.

We also assume the existence of a reference parameter θ0 such that p(θ0) > 0 and p(x | θ0) > 0
for all x ∈ Rn. Then there are:

1. a dimension K ≤ D;

2. a subset B ⊆ {1, . . . , n} of size |B| = K;

3. a set E ⊆ I of “exceptions” given as all i with Ni ∩N(B) ̸= ∅;
4. differentiable functions gi : RNi → RK for i ∈ E = I \ E;

5. a function U(Θ) with values in RK ; and

3This always trivially exists: simply choose I = {1}, N1 = {1, . . . , n} and ψ1 = P . Thus, there is no strong
assumption embedded in this condition. However, some probability distributions factor in more interesting ways, e.g.
Markov random fields and Bayesian networks with sparse graphs. For those distributions, the conclusion of the theorem
becomes interesting.
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6. a C1 function h : RN(B) → R, where N(B) = {1, . . . , n} \N(B);

such that the distribution P (X | Θ) factorizes as follows:

P (X | Θ) =
1

Z(Θ)
· e
[
U(Θ)T

∑
i/∈E gi(XNi

)
]
· h
(
XN(B)

)
·
∏
i∈E

ψi(XNi | Θ).

The specific definition of these functions is revealed in the proof.

Proof. Define F ′ : RD → L2 by

F ′(g) := ln
F (g)[

F (g)
]
(θ0)

− ln
p(Θ)

p(θ0)

for g for which
[
F (g)

]
(θ0) > 0, and F ′(g) := 0 otherwise. Then, for x ∈ Rn, we have

[
F (G(x))

]
(θ0) =

p(θ0 | x) > 0 and thus

F ′(G(x)) = ln
F (G(x))[

F (G(x))](θ0)
− ln

p(Θ)

p(θ0)

= ln
p(Θ | x)
p(θ0 | x) − ln

p(Θ)

p(θ0)

= ln
p(x | Θ)

p(x | θ0)

=
∑
i∈I

ln
ψi(xNi | Θ)

ψi(xNi | θ0)

=
∑
i∈I

fi(xNi)

with fi : RNi → L2 defined in the obvious way. By the following Lemma 7, we obtain an equality

ln
p(x | Θ)

p(x | θ0) =
∑

i:Ni∩N(B)̸=∅

fi(xNi) + U
∑

i:Ni∩N(B)=∅

gi(xNi) + C,

where B ⊆ {1, . . . , n} is of size |B| = K ≤ D, gi : RNi → RK , linear U : RK → L2 and a constant
C ∈ L2. Exponentiating, we obtain:

p(x | Θ) =
1

e−C
· e
[
U

∑
i:Ni∩N(B)=∅ gi(xNi

)
]
· p(x | θ0) ·

∏
i:Ni∩N(B)̸=∅

ψi(xNi | Θ)

ψi(xNi | θ0)
.

Now, note that C ∈ L2 and thus e−C = Z(Θ) is a function of θ. Similarly, U : RK → L2 can be
considered as a function with linear outputs U(Θ = θ) : RK → R. Defining

h
(
xN(B)

)
:=

∏
i:Ni∩N(B)=∅

ψi(xNi | θ
0)

gives the result.

2.3 Lemma: Additive Summary Equations

The following is taken from The Additive Summary Equation:

Lemma 7 (Additive Summary Equation). Let H be a Hilbert space, f : Rn → H a continuously
Fréchet differentiable function (i.e., C1 function), G : Rn → RD a differentiable function, and
F : RD → H a Fréchet differentiable function. Additionally, assume a finite index set I, subsets
Ni ⊆ {1, . . . , n}, and Fréchet differentiable functions fi : RNi → H such that, for all x ∈ Rn:

F (G(x)) = f(x) =
∑
i∈I

fi(xNi).

Then there exists K ≤ D, a set B ⊆ {1, . . . , n} of size |B| = K, differentiable functions
gi : RNi → RK , a linear operator U : RK → H, and a constant C ∈ H such that

f(x) =
∑

i:Ni∩N(B)̸=∅

fi(xNi) + U
∑

i:Ni∩N(B)=∅

gi(xNi) + C.
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Proof. From the chain rule (which is also valid for Fréchet derivatives), we get

Df(x) = D(F ◦G)(x) = DF
(
G(x)

)
◦DG(x),

which is a composition of the two linear operators

DG(x) : Rn → RD, DF
(
G(x)

)
: RD → H.

For a linear operator, define its rank to be the dimension of its image. Since RD creates a bottleneck
of dimension D, we obtain rank

(
Df(x)

)
≤ D for all x ∈ Rn.

Let K := maxx∈Rn rank
(
Df(x)

)
≤ D and let x0 ∈ Rn be an argmax that achieves that

maximum. Now, let B ⊆ {1, . . . , n} a subset of size |B| = K such that the vectors in H contained
in the “matrix” [

Df(x0)
]
B

generates the image of Df(x0).4 Let U : RB → H consist of an orthonormal basis for the image
of Df(x0); this exists since the image is a finite-dimensional R-vector space. Let U∗ : H → RB be
its Hermitian adjoint (i.e., the transpose in the finite-dimensional case). Then UU∗ : H → H is
a linear operator that projects on the image of Df(x0), as is well known. In particular, it leaves
elements in the image of Df(x0) invariant.

Now, let x ∈ Rn be any element with xN(B) = x0N(B). Then it follows that[
Df(x)

]
B
=

∑
i:Ni∩B ̸=∅

[
Dfi( xNi︸︷︷︸

=x0
Ni

)
]
B
+

∑
i:Ni∩B=∅

[
Dfi(xNi)

]
B︸ ︷︷ ︸

=0

=
∑

i:Ni∩B ̸=∅

[
Dfi(x

0
Ni

)
]
B
+

∑
i:Ni∩B=∅

[
Dfi(x

0
Ni

)
]
B︸ ︷︷ ︸

=0

=
[
Df(x0)

]
B
.

Since the image of Df(x) is maximally K-dimensional and it already contains the linearly inde-
pendent set

[
Df(x0)

]
B

of size K, we must have that the image of Df(x) coincides with that of

Df(x0). Consequently, remembering that UU∗ projects on this image, we have

Df(x) = UU∗ ◦Df(x) (1)

whenever xN(B) = x0N(B).

Now, let x ∈ Rn be any point. Define x′ := (x0N(B), xN(B)), where N(B) = {1, . . . , n} \N(B).

I.e., x′ contains the entries of x in the dimensions in N(B) and the entries of x0 in the dimensions
in N(B). Define the differentiable path γ : [0, 1] → Rn as the path connecting x0 to x′:

γ(t) = tx′ + (1− t)x0.

Then f ◦ γ : [0, 1] → H is Fréchet differentiable. Thus, it satisfies the fundamental theorem of
calculus for C1 functions, meaning that

f(x′)− f(x0) = (f ◦ γ)(1)− (f ◦ γ)(0)

=

∫ 1

0

(f ◦ γ)′(t)dt

=

∫ 1

0

Df
(
γ(t)

)
◦ γ′(t)dt

= . . .

Now, note that γ′(t) = x′ − x0 = (0N(B), (x− x0)N(B)), and thus:

. . . =

∫ 1

0

Df
(
γ(t)

)
N(B)

· (x− x0)N(B)dt

= . . .

4To be precise if you’ve never thought about infinite-dimensional spaces: Df(x0) may not be a matrix if H is infinite-
dimensional. However, Df(x0) is fully determined by the n “column” vectors

(
Df(x0)(ei)

)n
i=1

, and the span of those

contains a basis (Df(x0)(ei))i∈B of size |B| = K. We can view this basis then as a “matrix” or “operator” RB → H in
the obvious sense and denote it by

[
Df(x0)

]
B
.
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We have γ(t)N(B) = x0N(B). Thus, Df
(
γ(t)

)
= UU∗ ◦Df

(
γ(t)

)
, see Equation (1). Furthermore, if

i is such that Ni ∩N(B) ̸= ∅, then Ni ⊆ N(B) and thus Dfi
(
γ(t)

)
N(B)

= Dfi
(
γ(t)Ni

)
N(B)

= 0.

We obtain:

. . . = U
∑

i:Ni∩N(B)=∅

U∗
∫ 1

0

Dfi(γ(t))N(B) · (x− x0)N(B)dt

=: U
∑

i:Ni∩N(B)=∅

gi(x).

To show that gi is of the type signature gi(x) = gi(xNi), note that reversing the fundamental
theorem clearly shows gi(x) = U∗(fi(xNi)− fi(x

0)
)
. This also shows the differentiability of gi.

We have

f(x)− f(x′) =
∑
i

fi(xNi)− fi(x
′
Ni

)

=
∑

i:Ni∩N(B)̸=∅

fi(xNi)− fi( x
′
Ni︸︷︷︸

=x0
Ni

) +
∑

i:Ni∩N(B)=∅

fi(xNi)− fi( x
′
Ni︸︷︷︸

=xNi

)

=
∑

i:Ni∩N(B)̸=∅

fi(xNi)− fi(x
0
Ni

).

We obtain:

f(x) = f(x0) + f(x′)− f(x0) + f(x)− f(x′)

= f(x0) + U
∑

i:Ni∩N(B)=∅

gi(xNi) +
∑

i:Ni∩N(B)̸=∅

fi(xNi)− fi(x
0
Ni

)

=
∑

i:Ni∩N(B)̸=∅

fi(xNi) + U
∑

i:Ni∩N(B)=∅

gi(xNi) +
∑

i:Ni∩N(B)=0

fi(x
0
Ni

).

Now, setting C :=
∑

i:Ni∩N(B)=0 fi(x
0
Ni

), the result follows.

Remark 8. We make several remarks on regularity conditions in the theorem and a slight gener-
alization to open sets in Rn instead of Rn itself.

1. One crucial condition in the proof was that the function F given by F (g) = p(Θ | G(X) = g)
is Fréchet differentiable, at least in points g such that g = G(x) for some x. Ideally, we
would formulate that differentiability condition directly in terms of conditions for p(Θ) and
p(X | Θ). We now sketch how that could be done, but leave details to the future:

Due to Lemma 3, we have a commutative diagram

Rn RD L2

G

p(Θ|•)

F

Thus, if we can locally invert the differentiable function G around points g = G(x) in RD,
then we can reduce the differentiability of F to that of the minimal sufficient statistic p(Θ | •).
There are fairly regular conditions under which this local inversion is possible, see the section
on selections in this Wikipedia article.

However, this leaves the question open of when the minimal sufficient statistic p(Θ | •) is
differentiable. Its component functions are given by

x 7→ p(Θ = θ | x) = p(x | θ) · p(θ)∫
θ′ p(x | θ′) · p(θ′)

.

Thus, if p(x | θ) is differentiable in x for all θ, then under some further regularity conditions
needed to swap integration and differentiation, the component function will be differentiable.

Will this already result in differentiability of p(Θ | •)? If θ can take infinitely many values
and we stack the derivatives of all component functions together to a derivative of p(Θ | •),
then we still need to check when the stack will be a bounded linear function. We leave the
question of when boundedness can be ensured to the reader.
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2. In the theorem, we can also replace Rn by an open set X ⊆ Rn. Due to the construction in
Lemma 7, we need a certain “projected convexity” condition to make this work: there needs
to be an x0 achieving the argmax of the differential of f such that for all x ∈ X , the point
x′ = (x0N(B), xN(B)) and the whole line segment between x0 and x′ lie within X . This then
allows to integrate along that line segment.

3. Finally, note that the theorem says nothing about the regularity of U(Θ) with respect to θ.
This is since in the theorem, we consider it as a function θ 7→ U(θ) ∈ RK ∼= Lin(RK ,R) even
though it can more appropriately be described as a function U : RK → L2. In that setting,
U(x) is in L2 for all x ∈ RK .
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